Acetate Activation in Methanosaeta thermophila: Characterization of the Key Enzymes Pyrophosphatase and Acetyl-CoA Synthetase

نویسندگان

  • Stefanie Berger
  • Cornelia Welte
  • Uwe Deppenmeier
چکیده

The thermophilic methanogen Methanosaeta thermophila uses acetate as sole substrate for methanogenesis. It was proposed that the acetate activation reaction that is needed to feed acetate into the methanogenic pathway requires the hydrolysis of two ATP, whereas the acetate activation reaction in Methanosarcina sp. is known to require only one ATP. As these organisms live at the thermodynamic limit that sustains life, the acetate activation reaction in Mt. thermophila seems too costly and was thus reevaluated. It was found that of the putative acetate activation enzymes one gene encoding an AMP-forming acetyl-CoA synthetase was highly expressed. The corresponding enzyme was purified and characterized in detail. It catalyzed the ATP-dependent formation of acetyl-CoA, AMP, and pyrophosphate (PP(i)) and was only moderately inhibited by PP(i). The breakdown of PP(i) was performed by a soluble pyrophosphatase. This enzyme was also purified and characterized. The pyrophosphatase hydrolyzed the major part of PP(i) (K(M) = 0.27 ± 0.05 mM) that was produced in the acetate activation reaction. Activity was not inhibited by nucleotides or PP(i). However, it cannot be excluded that other PP(i)-dependent enzymes take advantage of the remaining PP(i) and contribute to the energy balance of the cell.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Regulation of Acetyl-Coenzyme A Carboxylase and Acetyl-Coenzyme A Synthetase in Spinach Chloroplasts

Acetyl-CoA Carboxylase, Acetyl-CoA Synthetase, Light Dependence o f Fatty Acid Synthesis in Chloroplasts In analogy to chloroplast fatty acid synthesis from acetate the key enzymes o f acetate fixation, acetyl-CoA synthetase and acetyl-CoA carboxylase, in rapidly Triton X-100 lysed spinach chloroplasts show an activation by light and deactivation in the dark. The stimulation o f acetyl-CoA carb...

متن کامل

Using archaeal genomics to fight global warming and clostridia to fight cancer.

The end of 2006 brought an unusually high number of completely sequenced microbial genomes. The list of new genomes (Table 1) includes three archaea and a large number of environmental, as well as parasitic, bacteria. Two of the newly sequenced genomes represent methanogenic archaea of the Methanosarcinales family that are commonly found in the rice fields. These organisms are key producers of ...

متن کامل

Pyrophosphate-Dependent ATP Formation from Acetyl Coenzyme A in Syntrophus aciditrophicus, a New Twist on ATP Formation

UNLABELLED Syntrophus aciditrophicus is a model syntrophic bacterium that degrades key intermediates in anaerobic decomposition, such as benzoate, cyclohexane-1-carboxylate, and certain fatty acids, to acetate when grown with hydrogen-/formate-consuming microorganisms. ATP formation coupled to acetate production is the main source for energy conservation by S. aciditrophicus However, the absenc...

متن کامل

Spinach leaf acetyl-coenzyme a synthetase: purification and characterization.

Acetyl-coenzyme A (CoA) synthetase was purified 364-fold from leaves of spinach (Spinacia oleracea L.) using ammonium sulfate fractionation followed by ion exchange, dye-ligand, and gel permeation chromatography. The final specific activity was 2.77 units per milligram protein. The average M(r) value of the native enzyme was about 73,000. The Michaelis constants determined for Mg-ATP, acetate, ...

متن کامل

Biochemical and kinetic characterization of the recombinant ADP-forming acetyl coenzyme A synthetase from the amitochondriate protozoan Entamoeba histolytica.

Entamoeba histolytica, an amitochondriate protozoan parasite that relies on glycolysis as a key pathway for ATP generation, has developed a unique extended PPi-dependent glycolytic pathway in which ADP-forming acetyl-coenzyme A (CoA) synthetase (ACD; acetate:CoA ligase [ADP-forming]; EC 6.2.1.13) converts acetyl-CoA to acetate to produce additional ATP and recycle CoA. We characterized the reco...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 2012  شماره 

صفحات  -

تاریخ انتشار 2012